Skip to main content

Applying Center Of Gravity Method for the LOS field strength computation (L4)

Below is a python code to compute the LOS magnetic field strength using the Center Of Gravity Technique. The method is applied on inverted IMAX data (cycle 177) in their current data format for the L4 observation mode (4 wavelengths within the iron line of IMAX):

import numpy as np
import matplotlib.pyplot as plt
import pyfits
import math
import os
import sys
from numpy import trapz

path1 = '/home/kahil_administrator/Desktop/IMaX_data/L12.2/'
path2 = "/home/kahil_administrator/Desktop/Inversions_177/B_COG_L_4/"

lam_0 = 5250.2 #the central wavelength of the FeI line (in Angstroms)
c_0 = 4.67*pow(10, -13) #A^-1 G^-1
g = 3 # effective Lande factor
sigma = 3*pow(10, -3)

## COG on 12 points: (only 10 excluding the two wavelength points):
del_lam = np.array([-87.5, -52.5, 52.5, 87.5]) # wavelength points
for n in range(10,50):
        ind = '225_0'+str(n)
        V_lam = np.zeros((936,936,4)) # V pixel array
        I_lam = np.zeros((936,936,4)) # I pixel array
        del_lam_G = np.zeros((936,936)) # COG wavelength
        B= np.zeros((936,936)) # LOS magnetic field

        dir_path = path1+ind

        im ='/reduc_rnr_'+ind+'_m087.5_I.fits.gz')
        I_m87_5 = im[0].data
        im ='/reduc_rnr_'+ind+'_m087.5_V.fits.gz')
        V_m87_5 = im[0].data

        im ='/reduc_rnr_'+ind+'_m052.5_I.fits.gz')
        I_m52_5 = im[0].data
        im ='/reduc_rnr_'+ind+'_m052.5_V.fits.gz')
        V_m52_5 = im[0].data

        im ='/reduc_rnr_'+ind+'_p052.5_I.fits.gz')
        I_p52_5 = im[0].data
        im ='/reduc_rnr_'+ind+'_p052.5_V.fits.gz')
        V_p52_5 = im[0].data

        im ='/reduc_rnr_'+ind+'_p087.5_I.fits.gz')
        I_p87_5 = im[0].data
        im ='/reduc_rnr_'+ind+'_p087.5_V.fits.gz')
        V_p87_5 = im[0].data

        im ='/reduc_rnr_'+ind+'_p192.5_I.fits.gz')
        I_c = im[0].data

        for i in range(936):
        for j in range(936):
         I_lam[i][j] = np.array([I_m87_5[i][j], I_m52_5[i][j], I_p52_5[i][j],I_p87_5[i][j]])
         V_lam[i][j] = np.array([V_m87_5[i][j], V_m52_5[i][j],V_p52_5[i][j],V_p87_5[i][j]])
         del_lam_G[i][j] = (np.trapz(V_lam[i][j]*del_lam, x=del_lam))/(np.trapz(I_c[i][j]-I_lam[i][j], x=del_lam))
         B[i][j] = abs(del_lam_G[i][j]*pow(10,-3)/(c_0*g*pow(lam_0,2)))

        hdu = pyfits.PrimaryHDU(B)
        hdu.writeto(path2+str('/B_') + ind+'.fits')