Studying small-scale magnetic features in the Quiet-Sun

Fatima Kahil

Max Planck Institute for Solar System Research-Göttingen, Germany

S. Solanki & T. Riethmüller

September 28, 2015

Motivation

- First Sunrise mission on June 9, 2009 provided seeing-free observations of the quiet sun region on the solar disc.
- Diffraction limited observations with high spatial, spectral and temporal resolution.
- Observations were carried over different spectral regions: at the visible, violet, and near ultraviolet wavelengths, sampling different heights of the photosphere.
- Relation between the continuum brightness in the visible and the magnetic field (important for the solar irradiance models reconstruction).
- Relation between the photospheric magnetic field, and the emission in the UV, which was never with such high resolution before.
- Evolution of small scale magnetic features ⇒ Origin of the quiet-Sun photospheric magnetic fields.

Data

Imaging Magnetograph eXperiment (IMaX)

- Disk center (quiet granulation region)
- Data recorded from 00:36 to 00:59 UT (42 quiet Sun magnetograms).
- V5-6 mode (Full Stokes Vector measured in 5 wavelength points + 6 accumulations per wavelength point).
- Fe I ($\lambda_0 = 5250.2 \text{ Å}$) spectral line (g=3).
- cadence = 32 sec.
- $\Delta \lambda = \{-80, -40, +40, +80, +227\}$ mÅ.
- level-2 data (phase-diversity reconstructed data).
- plate scale = 0.054458 arcsec/pixel (40 km/pixel).
- FOV = 50 arcsec \times 50 arcsec (936 \times 936 pixels).

SUNRISE Filter Imager (SuFI)

- Data at 300 nm and 397 nm (Ca II H core).
- Level-3 data (Phase-diversity reconstructed data).
- Plate scale = 0.02069 arcsec/pixel (at 300 nm) & 0.0198 arcsec/pixel (at 397 nm).
- FOV = 15 arcsec \times 40 arcsec (714 \times 1972 pixels).

Data preparation - Resampling

- SuFI data (397 nm and 300 nm) are resampled to a common plate scale (IMaX plate scale of 0.054458 arcsec/pixel) by bi-linear interpolation.
- New size of Sufi images(300 nm) = 272×750 pixels
- New size of Sufi images(397 nm) = 261×719 pixels

Figure : a) FOV of SUNRISE, b) FOV of IMaX and SuFI.

Data preparation - Image Alignment

- Selected SuFI 300 nm images whose observing times are closest to IMaX Stokes I continuum images.
- Selected SuFI 397 nm images whose observing times are closest to IMaX Stokes I line core images.
- IMaX Stokes I continuum (line core) images are cropped to the same FOV of SuFI 300 nm (397 nm) images.

- \bullet SuFI 300 nm (397 nm) images are aligned to the cropped IMaX Stokes I continuum (line core) images by means of a cross-correlation function computing shifts in x and y.
- All images from all data sets are cropped to the common FOV of $14" \times 39"$

Figure : a) Stokes I continuum b) Sufi 300 nm

Figure : c) Stokes I Line core d) Sufi Ca II H

Analysis - Measurements

STOKES I & V

 For each magnetogram, Stokes V averaged over the 4 wavelength points (within the line) is calculated for each pixel:

$$V = \frac{1}{4 \times I_c} \sum_{i=1}^4 a_i V_i \tag{1}$$

with I_c is the local continuum, and $a_i = [1, 1, -1, -1]$ to avoid cancellation.

- Gaussian fits are preformed to the Stokes I profiles and the following quantities are derived:
 - Line-of-sight velocity.
 - Line core Intensities.
 - Line depth Intensities.

Analysis - Measurements

LOS Magnetic Field

 The LOS component of the magnetic field is determined using the COG (Center-of-gravity) technique (Rees & Semel 1979):

$$B = \frac{\Delta \lambda_G}{C_0 \times g \times \lambda_0^2} \tag{6}$$

with $C_0=4.67\times 10^{-13} \text{m}^{-1} \text{G}^{-1}$, g is the Landé factor, and λ_0 is the central wavelength.

And

$$\Delta \lambda_G = \frac{\int_{-\infty}^{+\infty} V \Delta \lambda d\Delta \lambda}{\int_{-\infty}^{+\infty} (I_c - I) d\Delta \lambda}$$
 (mÅ) (3)

The wavelength difference of the COG of I + V and I - V profiles.

Analysis - Measurements

Continuum contrast

• The continuum contrast at each pixel of a given FOV is calculated:

$$Con(x,y) = \frac{I_c(x,y) - I_{qs}}{I_{qs}}$$
 (4)

Where I_{qs} is the mean continuum intensity of the corresponding FOV.

Line-Core Intensity

• As a proxy for the line core intensity, the average of the -40 and +40 $m\mathring{A}$ line positions at each pixel of the stokes I are averaged:

$$LC = \frac{I_{+40} + I_{-40}}{2 \times I_c} \tag{5}$$

Where I_c is the local continuum.

Sufi Brightness

For each IMaX continuum (line core) image, the best quality SuFI image at 300 nm (397 nm) is chosen.

- Small scale magnetic elements contribute to the solar irradiance variations.
- Contrast in the visible continuum is a proxy for the temperature excess with respect to the quiet photosphere.
- How spatial resolution affects the relation between the contrast and the magnetogram signal.
- Pixel-by-pixel study of the continuum contrast at 5250.02 Å vs longitudinal magnetic field.

- Topka et al.(1992): Ground-based Observations of continuum intensity in facular and quiet Sun regions near the disc-center.
- Continuum contrast was negative for all values of magnetogram signal for data near disk center (pores extracted).

- Kobel et al.(2011): Spectropolarimetric scans by Hinode/SP (resolution 0.3")
- The average contrasts decrease for B < 200 G, then increase to reach a peak at B \approx 700 G, then decrease again.

 Spectropolarimetric data from Sunrise-I/IMaX of the quiet sun near disc region with higher resolution (0.15").

 Scatter plots of both the continuum brightness and the brightness at 300 nm show approximately the same trend.

Analysis - Chromospheric Emission And Photospheric B

- The Ca II H at 397.6 nm sampled by SuFI is an excellent thermometer for the choromospheric temperature structure.
- Quiet Sun magnetic field is believed to be responsible for the chromospheric structure.

Analysis - Chromospheric Emission And Photospheric B

 Similarity of scatter plots for the brightness at 397 nm and stokes I line core Intensity.

Analysis - Chromospheric Emission And Photospheric B

Next topic: Magnetic Reconnection in the Quiet-Sun

- The same time-series data were used to track the evolution of small-scale magnetic features.
- Different physical processes were identified (appearence, disappearence, splitting, merging, emergence and cancellation) between the magnetic features.
- A detailed statistical study was carried for estimating the area, magnetic flux, and lifetime of these features with time.
- We will focus on the cancellation events (of 2 opposite polarity features).
- We will estimate the magnetic energy lost in this process and compare it to the thermal energy in the photosphere.
- Look for enhanced brightness (in all wavelengths).

The End