Studying small-scale magnetic features in the quiet Sun

Fatima Kahil

Max Planck Institute for Solar System Research-Göttingen, Germany Solar Lower Atmosphere and Magnetism

S. Solanki & T. Riethmüller

May 10, 2016

Introduction - Magnetic elements

- Enhanced brightness (continuum+spectral lines) with respect to surroundings
- Concentrated in the dark intergranular lanes.
- Described by vertical flux tubes.
 - Magnetic pressure \rightarrow reduce in $p_i \rightarrow$ internal evacuation
 - Buoyancy \rightarrow vertical flux tube
 - Opacity depression: shift of $\tau = 1$ level \rightarrow brightening with respect to surroundings
 - Expansion with height: flux conservation inside the flux-tube ⇒ "Wine-glass" shape

$$p_e = p_i + B^2/8\pi$$

- Contribution of magnetic elements to the TSI variations over the solar cycle: 30% at continumm wavelengths, and 60% at wavelengths below 400 nm (Krivova et al. 2006)
- Chromospheric structuring and heating of the outer atmosphere.

Figure : Topka et al.(1992); Lawrence et al.(1993)

Hinode/SP (0.3"): Fe I 630.15 nm and 630.25 nm lines

Figure : Kobel et al.(2011)

Fatima Kahil (MPS)

Hinode/SP (0.3"): Fe I 630.15 nm and 630.25 nm lines

Figure : Kobel et al.(2011)

Hinode/SP (0.3"): Fe I 630.15 nm and 630.25 nm lines

Figure : Kobel et al.(2011)

- Balloon-borne solar observatory: 1 m telescope/UV filter imager/imaging vector polarimeter (@ ~ 37 km)
- Diffraction limited angular resolution: 0.05" (35 km) at 214 nm, and 0.1" (70 km) in the visible.
- High angular, temporal, and spectral resolution observations, in the visisble and UV down to 200 nm.

- Balloon-borne solar observatory: 1 m telescope/UV filter imager/imaging vector polarimeter ($@ \sim 37 \text{ km}$)
- Diffraction limited angular resolution: 0.05" (35 km) at 214 nm, and 0.1" (70 km) in the visible.
- High angular, temporal, and spectral resolution observations, in the visisble and UV down to 200 nm.

Aims

- Relationship between the brightness in the continuum and NUV, with B_{los}
- Relationship between the lower chromosphere emission and Blos
- Constrain radiative MHD simulations of flux tube models

Data Preparation - Image alignment

- Sufi at 214 nm, 300 nm, 313 nm, and 388 mm with IMaX Stokes I continuum at 525.02 nm.
- Sufi at 397 nm (core of Call H) with IMaX stokes I line core
- Resampling to the same pixel size (IMaX's 0.05" / pixel)
- Cross-Correlation technique to find IMaX-SuFI offsets to a sub-pixel accuracy ⇒ Common FOV between all images (13" × 38")

10th Sunrise Science Meeting

Visible continuum and line core contrasts

 brightness measured with respect to the mean continuum quiet Sun intensities I_{cont,qs}

$$C_{cont} = \frac{I_{cont}}{I_{cont,qs}}$$

NUV contrasts

• $I_{NUV,qs}$ is the average intensity for pixels with $B_{los} \leq 2\sigma$

$$C_{NUV} = \frac{I_{NUV}}{I_{NUV,qs}}$$

Figure : IMaX (0.15"/Fe1 525.04 nm), Kahil et al.(2016, in preparation)

Fatima Kahil (MPS)

Visible continuum contrast vs. B_{LOS}

- granulation: $B \approx 0$
- field concentration in integranular lanes ($B \ge 70~G$)
- network region

Visible continuum contrast vs. B_{LOS}

- $\bullet\,$ Stokes I and V convolved with a gaussian of FWHM $= 0.32^{\prime\prime}$
- Blos derived from C-O-G
 - $B_{max} \approx 470$ G (with stray-light)
 - $B_{max} \approx 665$ G (corrected for stray-light)

Visible continuum contrast vs. B_{LOS}

- $\bullet\,$ Stokes I and V convolved with a gaussian of FWHM = 0.32"
- Blos derived from C-O-G
 - $B_{max} \approx$ 470 G (with stray-light)
 - $B_{max} pprox$ 665 G (corrected for stray-light)

Chromospheric emission vs. photospheric magnetic field

- QS is responsible for the heating of the outer chromosphere.
- Ca II-H line: chromospheric diagnostic

author	b	comments
Schrijver et al.(1989) Ortiz and Rast(2005) Rezai et al.(2007) Loukitcheva et al.(2009)	0.66 0.6 0.2 0.31	Mount Wislon (AR's) SOHO/MDI (QS) VTT (QS N+IN) BBSO+SOHO/MDI
() ,		(time averaged data)

$$\boxed{I = a.B^b + I_0} (1) \quad I_0: \text{ basal flux}$$
$$\boxed{I = a'.\log_{10}(B) + b'} (2)$$

cut(G)	b	χ^2 (1)	χ^2 (2)
170	$0.14 {\pm} 0.02$	1.03	1.2
190	0.18 ± 0.02	0.94	1.17
210	0.21 ± 0.02	0.90	1.12
230	0.25 ± 0.03	0.84	1.10
250	$0.33 {\pm} 0.03$	0.73	1.07

UV brightness vs. photospheric magnetic field

NUV brightness vs. photospheric magnetic field

$$\frac{l}{\langle I_{qs}\rangle} = a \cdot \log_{10}(B) + b$$

cut(G)	а	b	χ^2
90 100 150 200 250	0.41 ± 0.002 0.42 ± 0.002 0.44 ± 0.002 0.45 ± 0.002 0.46 ± 0.002	$\begin{array}{c} 0.09 \pm 0.005 \\ 0.07 \pm 0.005 \\ 0.01 \pm 0.006 \\ -0.03 \pm 0.007 \\ 0.04 \pm 0.000 \end{array}$	3.34 2.70 1.33 0.93

NUV brightness vs. photospheric magnetic field

$$\frac{l}{< l_{qs}>} = a \cdot \log_{10}(B) + b$$

cut(G)	а	b	χ^2
90 100 150 200 250	$\begin{array}{c} 0.31 {\pm} 0.001 \\ 0.31 {\pm} 0.002 \\ 0.33 {\pm} 0.002 \\ 0.34 {\pm} 0.002 \\ 0.34 {\pm} 0.002 \end{array}$	$\begin{array}{c} 0.26 {\pm} 0.003 \\ 0.25 {\pm} 0.004 \\ 0.20 {\pm} 0.004 \\ 0.18 {\pm} 0.005 \\ 0.17 {\pm} 0.007 \end{array}$	2.66 2.12 1.10 0.84 0.74

NUV brightness vs. photospheric magnetic field

$$\frac{l}{\langle I_{qs}\rangle} = a \cdot \log_{10}(B) + b$$

cut(G)	а	b	χ^2
90	$0.43 {\pm} 0.002$	$0.11 {\pm} 0.004$	2.62
100	0.43 ± 0.002	0.09 ± 0.004	2.17
150	0.45 ± 0.002	0.05 ± 0.006	1.53
200	0.45 ± 0.003	0.04 ± 0.008	1.34
250	$0.45 {\pm} 0.004$	$0.04 {\pm} 0.01$	1.26

MHD simulations

- Röhrbein et al.(2011):
 - MURaM code: plage region (B = 200 G)
 - convolution with Airy functions of D = 1.0 m (Sunrise) and D = 0.5 cm (Hinode)
 - $\lambda = 630.2 \text{ nm}$

Fatima Kahil (MPS)

 C-O-G applied on stray-light corrected stokes profiles (lev2.3) Center of gravity method (Rees & Semel 1979):

Figure : B_{los} derived from inversions vs. B_{los} from C-O-G on IMaX data points

Fatima Kahil (MPS)

Lower horizontal branch

Lower horizontal branch

Lower horizontal branch

Linear slope

Linear slope

Linear slope

Figure : B_{los} derived from inversions vs. B_{los} from C-O-G on inverted profiles

Fatima Kahil (MPS)

- Granulation properties (velocity, size, lifetime..) in the quiet Sun inferred from IMaX and SuFI, and comparison to MHD simulations.
- CLV of continuum and UV contrasts vs B_{los} of small-scale features.
- Continuum and UV brightness of plage regions (Sunrise2) vs B_{los} , and comparison with MHD simulations.
- Photospheric magnetic fields determination techniques and approximations (C-O-G, weak-field, Inversions).
- Signatures of magnetic reconnection processes in the quiet Sun.

Thank you!